- 中大商學院研究探討人工智能挑選股票的限制
- 2020年08月27日 來源:廠商供稿
提要:程教授補充:“這對于實時交易、風險管理和只做多的機構特別有價值。此外,機器學習方法更趨于擅長于選股而不是采用板塊輪動的策略。”她指的板塊輪動是將投資組合中的資金在行業板塊之間進行輪動交換,從而追趕下一輪經濟周期來獲利的策略。
中國香港 -Media OutReach- 2020年8月27日 -運用人工智能在股巿賺取利潤,一直是金融業界的終極目標。不少業內人士曾作多番嘗試,亦取得不同程度的成功。就以全球最大的環球資產管理公司貝萊德(BlackRock)為例,較早前曾表示其人工智能算法持續擊敗由投資管理顧問及專家所管理的投資組合。然而,香港中文大學(中大)最近發表的研究顯示,機器學習的有效性或許值得三思。
這項研究題為《從預測股票收益審視經濟約束對機器學習的影響》,針對大量1987至2017年間的美國股巿交易數據作深入分析。研究人員使用了三種成熟的深度學習方法,成功獲得每月高達0.75%至1.87%的價值加權及風險調整后收益,反映機器學習在賺取投資回報方面十分成功。然而,研究人員亦發現,如果限制這些機器學習算法只能選擇相對容易交易和交易成本低的股票時,投資回報便會隨之下降。
中大商學院金融學系助理教授程斯是合著這份研究論文的作者之一,她表示:“我們發現,如果考慮實證金融學中常用的經濟約束條件,比如剔除微型市值股票及陷入財務困境的企業,將會大大削弱深度學習方法對股票收益的可預測性。”
顯著降低的回報
程教授聯同IDC Herzliya的Doron Avramov教授和耶路撒冷希伯來大學博士生Lior Metzker攜手進行這項研究,他們發現:剔除了因為巿值太低而難于交易的微型市值股票后,投資組合回報下跌了62%;剔除了未能獲得標準普爾長期發行人信用評級的股票后,回報更下跌了68%;剔除了信用評級下調陷入財務困境的不良企業后,回報甚至下跌了80%。
根據這項研究,在套利變得特別困難的時期,例如投資者情緒高漲、市場大幅波動和市場流動性低的時候,運用機器學習交易策略的回報會較豐厚。
機器學習策略的一個弊端在于交易成本較為高昂。程教授表示:“機器學習方法需要頻繁交易和極高股票倉位才能發揮威力。考慮到交易成本,一般投資者較難獲得投資組合的超額收益。”但她補充說,這個發現并不代表機器學習策略對所有交易者都是無利可圖。
程教授繼續指出:“我們發現在合理的交易成本下,所研究的機器學習方法將難以達到在統計學和經濟學上實現有意義的超額收益。因此,投資者應調整自己對潛在凈回報的期望。”
機器學習的未來
程教授解釋:“然而,不應把我們的研究結果視為反對將機器學習技術應用于定量投資領域。相反,基于機器學習的交易策略在資產管理方面有可觀的前景,例如有能力處理多種股票交易的弱信號并將其整合成有意義的訊息,從而作為制定交易策略的基礎。”
此外,機器學習投資策略顯示出較低的下行風險,并且在經濟危機時仍繼續產生正收益。這項研究發現,在過往多次市場大幅下滑時期,例如1987年黑色星期一(Black Monday)美國股災、俄羅斯違約、科網股泡沫破裂以及近期的金融危機,最佳的機器學習投資方法所產生的價值加權回報每月高達3.56%(已排除微型市值股票),相比之下,同期市場回報則為負6.91%。
程教授表示,通過識別個別股票的異象(走勢與傳統資本市場定價理論預測背道而馳的股票)來進行交易的策略,獲利能力主要來自空頭倉位,而且這種策略近年已逐漸勢微。然而,機器學習投資策略藉多頭倉位獲利的能力更高,并且在2001年后仍然行之有效。
程教授補充:“這對于實時交易、風險管理和只做多的機構特別有價值。此外,機器學習方法更趨于擅長于選股而不是采用板塊輪動的策略。”她指的板塊輪動是將投資組合中的資金在行業板塊之間進行輪動交換,從而追趕下一輪經濟周期來獲利的策略。
她補充說,這是首個提供大量證據來對機器學習方法的經濟價值進行的研究。
程教授指出:“我們的實證分析表明,大多數機器學習方法都面臨著預測股票收益的共同挑戰,即超額收益主要集中于難以套利的股票以及在套利困難的時期。因此,雖然機器學習提供了讓我們加深了解資產定價的寶貴機會,但在評估各種新方法的成效時,考慮常見的經濟約束條件也至關重要。在推廣機器學習模型到不同的場景前,也應確認有關模型是否具備足夠的外在效度。”
參考資料:
Avramov, Doron and Cheng, Si and Metzker, Lior, Machine Learning versus Economic Restrictions: Evidence from Stock Return Predictability (April 5, 2020). Available at SSRN: https://ssrn.com/abstract=3450322 or http://dx.doi.org/10.2139/ssrn.3450322
英文原文刊于中大商學院“中國經商智慧”網站:https://bit.ly/3fX2ydr。
關于香港中文大學商學院:
香港中文大學(中大)商學院由六個教學單位組成,包括會計學院、酒店及旅游管理學院、決策科學與企業經濟學系、金融學系、管理學系及市場學系。成立于1963年的中大商學院,是區內首間提供工商管理碩士(MBA)課程和行政人員工商管理碩士(EMBA)課程的商學院。現時中大商學院合共提供11個本科課程及20個研究院課程,包括工商管理碩士、行政人員工商管理碩士、碩士、理學碩士、哲學碩士及博士課程。
中大商學院的MBA課程在2020年《金融時報》(Financial Times)百強排行榜名列全球第50位,而EMBA課程亦在2019年排名全球第24位。中大的商界校友人數逾37,000人,為香港之冠,其中不少校友已晉身政府和商界的重要決策層。商學院現有逾4,800名本科和研究生,現任院長為周林教授。